as the (TableSize+1)th value in every case. Will such a rehash function, the average number of symbol comparisons per search is reduced lo approximately

-(1/α)log(1-α)

so that 10% occupancy gives an average of 1.05 comparisons per search,

50% occupancy gives an average of 1.39 comparisons per search,

90% occupancy gives an average of 2.56 comparisons per search,

Hash tables are undoubtedly the best means of organizing semantic tables when fast searching is required. Their disadvantages are that, for efficient operation, they require more storage than they actually use and that, if they do become full, they cannot be extended easily. They also require each entry to be the same size although this can be overcome, as shown in Section 11.4.2, by holding the hash table as an array of pointers to a corresponding set or variable-length symbol entries. This also minimizes the storage wastage required for efficient operation. Many improved variations on these basic methods of hash table representation using pointers can be devised easily.

1.1 Tables for block-structured languages

In considering possible table organizations so far we have assumed that all the entries in the table were associated with unique symbols of equal significance in any search. This is not so when block-structured languages are considered. In this case the same symbol may be declared and used in different blocks and thus distinct entries must coexist in the semantic table corresponding to each declaration. The basic scope rules associated with most block-structured languages imply that, to find the correct entry for a given symbol requires that all entries arising from declarations in the current block are inspected first, then those from the surrounding block, and so on, i.e. a hierarchical table search is required. How this seaTch is provided depends upon the underlying table organization.

1.1.1 Blocked unsorted tables

The blocks of the example Modula-2 program of Figure 11.14 have been enclosed in boxes and each block allocated a block number which is shown at the top right of the corresponding box.

Within The statement-part or each block the numbers of the blocks whose local identifiers are accessible at that point have also been indicated.

A block structure is easily superimposed on a linar table by

(a) numbering the blocks or the source program, say in the order in which they are opened;

(b) keeping a scope table in which the entry for each block delimits the linear sequence of semantic table entries created for that block.

[image: image1]
Figure Error! No text of specified style in document..1 Block structure of an example Modula-2 program
For languages with pre-declared symbols it is customary to create a pseudo-blo… which surrounds the whole source program and which is initialized before compilati… begins with entries for all those standard symbols. These are then locatable by the sa… mechanism as program-defined symbols. Figure 11.15 illustrates the structure o… linked list semantic table for the Modula-2 program of Figure 11.14.

Such a structure may be defined as follows:

TYPE SymboEntry = POINTER TO SymbolRecord;

CONST MaximumNumberOfScopes = …;

VAR ScopeTable: RECORD

 NumberOfScopes: [0.. MaximumNumberOfScopes];

 Table: ARRAY [1.. MaximumNumberOfScopes] OF

 RECORD Head: SymbolEntry END;

END;

[image: image2]
Figure Error! No text of specified style in document..1 Blocked unsorted table structure
The scope table is normally organized as a linked list rather than using an array. This avoids the need to place an upper limit MaximumNumberOfBlocks on the number of blocks in a source program and leads to greater storage economy in the representation of the block table.

At the commencement or semantic analysis of a new source program block, the next available scope number must be assigned to this block and the corresponding scope table entry initialized to be an empty sequence of table entries. Thus we introduce into the Table module a new operator

PROCEDURE OpenScope;

to perform these scope initialization actions.

At each declarative occurrence of a symbol a new table entry must be created and appended to the sequence for the current block.

To search the semantic table for a particular entry involves a hierarchical search of the individual collections of entries for each block accessible at that point in the source program--starting with the current block, and then the enclosing block, and then its enclosing block, and so on. Hence, in Figure 11.14, a search performed during compilation of the statement-part of the procedure C must search the entries for blocks (4, 1, 0), in that order. Searching the entries for any given block involves extracting the block table entry for that block and then searching the sequence of table entries delimited by it.

Note that in one-pass compilation the symbol entries for a given block are no longer needed as soon as the analysis of that block is completed. These entries can thus be discarded at that point and the scope table structure therefore collapses to a stack in which the topmost entry is always that for the current block. We therefore introduce a further Table module operation, complementary to OpenScope, which is responsible for performing the necessary scope finalization actions, viz.

PROCEDURE CloseScope;

[image: image3]
Figure Error! No text of specified style in document..1 Blocked unsorted table structure for one-pass compilation
The table search operation thus is modified to search the semantic tables for all the currently defined scopes, beginning at the topmost one in the stack. Figure 11.16 illustrates the state of the semantic table during the analysis of the procedure C in the program of Figure 11.14.

1.1.2 Blocked sorted tables

[image: image4]
Figure Error! No text of specified style in document..2 Blocked binary tree table structure
Binary tree tables for a block-structured language can be organized in the same way as linear tables—with a tree for each block, the root of each tree being pointed to by a corresponding scope table entry. Figure 11.17 shows a tree-structured table for one-pass compilation in which the only trees retained are those of currently accessible blocks, i.e. the table structure is that of a stack of trees.

This representation is considered in further detail when we construct the semantic analyzer for Model in Chapter 13.

The use of an array representation for an ordered table in contiguous storage is convenient only in one-pass compilation where the ordered sub-table to which an entry is to be added is always the topmost one and so adjacent to the unused elements of the array.

1.1.3 Blocked hash tables

It is not practical to adopt a scheme which uses a separate hash table for each program block as this implies setting a bound on the maximum number of entries in each block rather than in the program as a whole. This, together with the need to have each table lightly loaded so as to achieve fast search times, must lead to an unacceptable waste of storage.

[image: image5]
Figure Error! No text of specified style in document..1 Blocked hash table
However, we can devise some alternative representations which use a single hash table for the entire program.

(1) The block number may be combined with the symbol representation to produce a composite search key which is unique for each entry. Thus, finding an entry corresponding to a given symbol involves searching the table for this symbol combined with the current block number, then combined with the enclosing block number, and so on.

(2) All of the entries for a given symbol may be held as a linked list to which the hash table entry for the symbol points (Figure 11.18 illustrates the state of such a table during the analysis of the body of procedure C in Figure 11.14). When searching for the entry for a given symbol, once the relevant hash table entry for the symbol representation is found, the linked list which it references must then be searched for the entry with the correct block number.

Once again in the case of one-pass compilation only the entries for symbol declared in the currently accessible block need be retained and entries for a given block may be discarded once analysis of that block is complete. Thus the required entry in a search for a given symbol is always that at the head of the linked list concerned, provided that new entries are always at the head of each list.

1.2 Further reading

McKeeman (1976b) gives a detailed treatment of symbol table organization and access, and gives comparative figures for table access speeds derived from experimental results. Symbol tables and searching algorithms are also examined in depth in Knuth (1973), Aho, Hopcroft and Ullman (1983) and Aho, Sethi and Ullman (1986). Tremblay and Sorenson (1985) considered the searching of sub-tables in detail.

A discussion of hashing algorithms appears in Morris (1968) and Wirth (1976). Various alternatives to hash tables for representing semantic tables are described in the chapter on sparse data structures in Welsch, Elder and Bustard (1984).

1.3 Exercises 11

11.1 Assuming

(i) an unsorted table organization (as in Figure 11.16),

(ii) a binary tree organization (as in Figure 11.17),

(iii) a hash table organization (as in Figure 11.18 and using the hash function suggested in 11.4.3),

trace, by means of diagrams, the state of semantic table as the identifiers declared in the following outline Model program are entered into the tables by a one-pass compiler:

MODULE Main;

 VAR X, C, Y, H: INTEGER;

PROCEDURE P;
MODULE Test;

0

VAR I, J, K: INTEGER;

PROCEDURE A

PROCEDURE C

BEGIN

… (1,0)

END Test.

1

(X, Y: REAL);

VAR L, K: REAL;

PROCEDURE B

BEGIN

… (2,1,0)

END A;

2

(Y, Z: CHAR): CHAR;

VAR X: INTEGER;

BEGIN

… (3,2,1,0)

END B;

3

(A, B: REAL);

VAR Z: INTEGER;

BEGIN

… (4,1,0)

END C;

4

Scope Table

0

1

2

3

4

5

NumberOfScopes

Test

REAL

CHAR

C

P

K

J

I .

B

A

L

Y

X .

X

Y

Z .

Z

B

A .

Linked lists of table entries

Scope Table

0

1

2

3

CHAR

Test

REAL

K

C

P

J

I .

A .

Z

B

NumberOfScopes

Linked lists of table entries

Scope Table

0

1

2

INTEGER

I

A

REAL

CHAR

Binary Trees of

Table Entries

J

B

Test

NIL

X

NIL

Z

A

REAL

K

INTEGER

NIL

C

L

NIL

I

NIL

CHAR

P

NIL

Y

3

3

3

2

2

2

2

2

1

1

1

1

1

0

0

0

0

